Mirror
Mirror pipeline configuration
This page helps to document the JSON configuration structure for creating a data pipeline on Goldsky. This JSON file defines the sources, transformations, and sinks that comprise your pipeline. The --definition-path
can be used to specify this JSON file.
The JSON schema consists of three primary sections:
- Sources: Denotes the origin of the data.
- Transforms: Lists the transformations to be applied to the data from the source.
- Sinks: Specifies where the transformed data should be sent.
Below, we'll explain each section of the JSON structure, and provide an example for each subset of the schema.
Sources
The sources
array contains one or many source objects, each with the following properties:
type
: The type of the source. This could besubgraphEntity
,file
, orkafka
.deployments
: An array of objects, each containing a deploymentid
. This is only required for sources of typesubgraphEntity
.namespace
: The namespace for the source. This could bepolygon
,hashflow_cross_chain
,matic
, ormainnet
.entity
: An object containing thename
of the entity. This is only required for sources of typesubgraphEntity
.name
: The name of the source. This is required for sources of typefile
, andkafka
.format
: The format of the file. This is required for sources of typefile
.tableDefinitionPath
: The path of the table definition. This is required for sources of typefile
.path
: The path of the file. This is required for sources of typefile
.topic
: The topic to consume from. This is required for sources of typekafka
.
Source Example
{
"type": "subgraphEntity",
"deployments": [
{
"id": "QmVcgRByfiFSzZfi7RZ21gkJoGKG2jeRA1DrpvCQ6ficNb"
}
],
"namespace": "polygon",
"entity": {
"name": "fixed_product_market_maker"
}
}
Transforms
The transforms
array contains one or many transform objects, each with the following properties:
name
: The name of the transformation.type
: The type of the transformation. Currently, onlysql
is supported.sql
: The SQL query to be performed.primaryKey
: The primary key for the transformation.
Transform Example
{
"name": "negative_fpmm_scaled_liquidity_parameter",
"type": "sql",
"sql": "SELECT id FROM polygon.fixed_product_market_maker WHERE scaled_liquidity_parameter < 0",
"primaryKey": "id"
}
Sinks
The sinks
array contains one or many sink objects, each with the following properties:
type
: The sink type. This could bepostgres
orelasticsearch
.sourceStreamName
: The source stream name for the sink.table
: The table name to load into. This is required for sinks of typepostgres
.schema
: The schema for the sink. This is required for sinks of typepostgres
.secretName
: The name of the secret for the sink. This could beAPI_POSTGRES_CREDENTIALS
orREDPANDA_CREDENTIALS
.topic
: The topic to produce to. This is required for sinks of typekafka
.
Sink Example
{
"type": "postgres",
"sourceStreamName": "negative_fpmm_scaled_liquidity_parameter",
"table": "test_negative_fpmm_scaled_liquidity_parameter",
"schema": "public",
"secretName": "API_POSTGRES_CREDENTIALS"
}
Full Examples
Example 1
This pipeline is named polymarket-extended-1
. It pulls data from a single subgraphEntity
source, processes the data with a single SQL transformation, and stores the result into a PostgreSQL sink.
goldsky pipeline create --name polymarket-extended-1 --definition $'
{
"sources": [
{
"type": "subgraphEntity",
"deployments": [
{
"id": "QmVcgRByfiFSzZfi7RZ21gkJoGKG2jeRA1DrpvCQ6ficNb"
}
],
"namespace": "polygon",
"entity": {
"name": "fixed_product_market_maker"
}
}
],
"transforms": [
{
"name": "negative_fpmm_scaled_liquidity_parameter",
"type": "sql",
"sql": "SELECT id FROM polygon.fixed_product_market_maker WHERE scaled_liquidity_parameter < 0",
"primaryKey": "id"
}
],
"sinks": [
{
"type": "postgres",
"sourceStreamName": "negative_fpmm_scaled_liquidity_parameter",
"table": "test_negative_fpmm_scaled_liquidity_parameter",
"schema": "public",
"secretName": "API_POSTGRES_CREDENTIALS"
}
]
}
'
Example 2
This pipeline is named poap-extended-1
. It pulls data from two subgraphEntity
sources, does not perform any transformations, and stores the result into two separate PostgreSQL sinks.
goldsky pipeline create --name poap-extended-1 --definition '
{
"sources": [
{
"type": "subgraphEntity",
"deployments": [
{
"id": "QmbsFSmqsWFFcbxnGedXifyeTbKBSypczRcwPrBxdQdyXE"
},
{
"id": "QmNSwC6QjZSFcSm2Tmoy6Van7g6zSEqD3yz4tDWRFdZiKh"
},
{
"id": "QmZUh5Rp3edMhYj3wCH58zSNvZvrPSQyeM6AN5HTmyw2Ch"
}
],
"namespace": "hashflow_cross_chain",
"entity": {
"name": "pool_created"
}
},
{
"type": "subgraphEntity",
"deployments": [
{
"id": "QmbsFSmqsWFFcbxnGedXifyeTbKBSypczRcwPrBxdQdyXE"
},
{
"id": "QmNSwC6QjZSFcSm2Tmoy6Van7g6zSEqD3yz4tDWRFdZiKh"
},
{
"id": "QmZUh5Rp3edMhYj3wCH58zSNvZvrPSQyeM6AN5HTmyw2Ch"
}
],
"namespace": "hashflow_cross_chain",
"entity": {
"name": "update_router_permissions"
}
}
],
"transforms": [
],
"sinks": [
{
"type": "postgres",
"sourceStreamName": "hashflow_cross_chain.pool_created",
"table": "test_pool_created",
"schema": "public",
"secretName": "API_POSTGRES_CREDENTIALS"
},
{
"type": "postgres",
"sourceStreamName": "hashflow_cross_chain.update_router_permissions",
"table": "test_update_router_permissions",
"schema": "public",
"secretName": "API_POSTGRES_CREDENTIALS"
}
]
}
'
Example 3
This pipeline is named polymarket-extended-1
. It pulls data from a file
source, processes the data with a single SQL transformation, and sends the result to a Kafka sink.
goldsky pipeline create --name polymarket-extended-1 --definition '
{
"sources":[
{
"type":"file",
"name":"raw_logs",
"format": "parquet",
"tableDefinitionPath": "goldsky-raw/ethereum-matic/schemas/log_schema.sql",
"path": "goldsky-raw/ethereum-matic/logs-parquet/",
"namespace":"matic"
}
],
"transforms": [
{
"name": "logs",
"type": "sql",
"sql": "SELECT \'log_\' || block_hash || \'_\' || CAST(log_index AS STRING) as id, log_index, transaction_hash, transaction_index, block_hash, block_number, address, data, topics FROM matic.raw_logs WHERE block_number IS NOT NULL",
"primaryKey": "id"
}
],
"sinks":[
{
"type":"kafka",
"topic":"matic.raw.logs",
"secretName":"REDPANDA_CREDENTIALS",
"sourceStreamName":"logs"
}
]
}
'
Example 4
This pipeline is named decoded-logs
. It pulls data from a kafka
source, without performing any transformations, and stores the result into a PostgreSQL sink.
goldsky pipeline create --name decoded-logs --definition '
{
"sources":[
{
"type":"kafka",
"name":"decoded_logs",
"topic": "mainnet.decoded.erc20_721_1155.logs",
"namespace":"mainnet"
}
],
"transforms":[
],
"sinks":[
{
"type":"postgres",
"table":"decoded_logs",
"schema":"ethereum",
"secretName":"POSTGRES_CREDENTIALS",
"sourceStreamName":"mainnet.decoded_logs"
}
]
}
'
These examples should provide a good starting point and reference for creating your data pipeline definitions in Goldsky.